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. FOREWORD _

= . DRI o ' &

v

S 1l
L e
‘The ORO research group to which the authors of th1s paper are ass1gned

o -

just completed the transportatlon phase ofa study of . computer-ass1sted strategic

‘plannmg for the Army.* A central difficulty in such planmng is a.nalys1s of major
l/
transportatlon networl's so that one obj ectlve of the research was programmg a

i)f

‘ dx‘g}"fal oomputer.to carry-out network analysis in a manher c_onformmg with
Army requirements, This in turn called for the adaptation or creation of a

:snitable» algorithm.“ o -

3

~ The solution obtained-does the following:

(a) For any existing rail or highway net,
determmes the maximum tonnage that can be
moved from any number of specified ""gources'
(e.g., ports and beaches) ‘to any number of

. gpezified:"destinations™ (e.g.; depots in the
o Communications Zone of a m111tary theater of
operatlons, or Army supply points).

O

. \3 ’ (O

(b) For any tonnage requlremen'rs at

= . the destinations less than or equal to the max~

' imum, determines the routings necessary to
f«-dehver such tonnage. o © e

o

(¢) Subject to (a) and/or (b) above, ‘ 4
determines the minimum-distance routings <
to accomplish the requlred deliveries.
e
(d) Determmes for each routing
in the solutlon, the tonnage flow over each
individual link.

' W e

’ *Reported in ORO-T~393, " Computer-A331sted Strateglc Loglstlc |
‘ Plannmg Transportatlon Phase", now in pub11cat10n . . i
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The computer program thus ‘obtainable prints routes w1th 11n1r,and/
Junctlon pomt desugnatmns, in the form requlred as 1nput to the subsequent
steps of the transportatmn planmng process. g .

A full discussion of the application and some discussion of the algorithm
| ig being made av&i'labl’e. in. AORO-;;A?I?—393’.\.to thicﬁ- readers. »interested in these as~

pects are referred It was: decided to restrict the present paper entirely to the

¢

formal statement of the mathematical problem underlymg the algorlthm with
/ . :
Ve

. its solution and the required proofs. . v

The aim of the/work was to develop an uigoritmn tailor-made to the
Army's requirements. - The most directly applicable ideas in the literature were

RN .
\»;‘;‘&‘ N / -

;s | 5 studled and adapted Thus the results in this paper are not entlrely or1g1na1 but

constitute in part an adaptation of known methods. to a specific new apphcatlon.
However, the_ideal solution* yielding a minimum "cost" or "distance" flow
pattern for every quantlty of flow up to the maximum, with the associated cost

L{ . ‘ =

profile, * are considered to. be novel. - i ,

[t

e “

e

(o

' ' Lol . Strother H. Walker, Chalrman
4 : ' Logistics Gaming Group

fod

4 November 1960

v s

) *See defm1t1ons below, p: 22and p 23 respectively.

("« ) - . ) ) = N—J . .
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R A ABSTRACT
th. 1
\ " A procedure is presented for soi'ving the following problem:
g? x 7 u | 0 K
. S _ Given a finite network with a capacity
| o " and a length (or cost factor) associated with
1 R _ each orientation of every link, finda family
' " of minimum-cost‘flow patterns between two
S - specified nodes, one pattern for every = .
> 4 g integral amount of flow up to the maximum’ -
: consistent with link capa_cj.g;ijes, .
W -
Yol “ %\1 - - w
The procedure is an iterative process’that adds a succession of
i o , V‘app'ropriate elementary chain flows in such a(‘way that each new pattern
minimizes \if\:()st for a greater amount of flow. The presentation is )
(: | vy /:;:» ? . ‘ ) ' ' .
intended to be self-contained and includes a proof of the validity of the é ]
‘procedure. . /\ | . '
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INTRODUCTION

Tbis ‘paper presents e general procedure for soIVing,» the»following}
abstract network flow problem: Given a finite network, whose links fhaVeﬁas‘é
.‘signed»c,apacitijest and lengths: (or cost ‘f‘actors;)‘, find a fam11y of minimum cost
ﬂow‘patte'ms =b,etvﬁveen- two wspecifie‘d‘ ‘nodes,, one pattern 'for every integral

”amount of flow up to the max1mum consistent w1th link capamtles

The first section defmes the basic network terms and symbols employed
throughout the paper. A number of lemmas that are consequences of these
def1n1t10ns ;re also estabhshed here. The second gection presents an 1terat1ve

. procedu,re that is shown to solve the stated network problem, under the as-
sumption that‘han"alg‘ori»thm with certain characteristics can be devised. The
final section of the p’ape?r produces this algorithm and proves that it has the
~requ*ired char;oteristics. ‘A glossary of the principal symbols appearing in
the development is included at the end.

| Some of the basic ideas introduced‘ in the paper are iltl'us"trat’ed'

geometrically. However, the mathematlcal development does not rest on

geometrical or topologlca-l considerations, It should also be noted that net- - /

work theory, including the specific topic of this paper, is applicable to

o problems in which the relevant network is not a phy81ca1 structure connecting

points in space. Whereas network links may be 1nterpreted as transport routes,

n\

. they may also be 1nterpreted as the set of perm1ss1b1e mformatmn channels in

an orgamzatlon or as the set of poss1b1e tranmtlons between the var1ous states.

2}

-of-a system, -
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PRELIMINARY DEFINITIONS AND LEMMAS

e

BASIC NETWORK TERMS

bi | ‘ P A "network" consmts of a finite set of dlstmct elements. N N2, . i e "’:N-k
called "nodes",,, together with-a subset of all unordered pairs (’Ni‘" Nj:)' that can be
formed from distinct nodes N1 and Nj{" ' The elements of this subset are termed
the "links" of thegnetWorkt. These are necessarily finite in number, an j‘upper '

I | ' ~ limit on the number of links being [ k(k-1)]/2, where k is the n‘urlnber of nodes.

G

k| i (Th1s is the number of links if every pair of distinct nodes determines. a link.)

e

¢

If an ordermg is ass1gned to the nodes of a link (N N, ) de31gnat1ng N as
the first or "1n1t1a1 (node" and N, as the second or "terminal node", .- the‘ re-

. sulting object is termed a "directed 11nk from NJ to N and 1s denoted by NJ N

a ' ) Thus two directed links, N i Nj and Nj"‘ N., can be -assocmted with each link,

o] | . ‘1t is convenient to introduce a representatlve set of d1rected 11nks called

an "enumerating set." If a network has n undirected links, an, enumeratmg set

;‘ | : for this netwerk is .any set of n- d1rected links: such that each und1rected link is
} - represented by prec1ser one of the two directed links assocmted w1th it. It is
) ev1dent that there are 2n dlstmct enumerating sets that can be assoc1ated with
4 o a network. The function of such a set is to establish for each lmk a conventmn

as to whlch direction w111 be considered posmve in descrlbmg ﬂows through

vy
Y

4 the network.

Any network can be represented by a 51mp1e geometr1ca1 structure in

, three-d1mensmna1 space Let any k dlstmct pomts represent the k nodes For |




et 3

~each link '(ZNV N’ )' of the network construct a simple curve, having' thent:orresponding ‘

e o
L3}

pomts as end points, that contams none of the k-2 pomts correspondmg to other
nodes and that 1ntersects none of the curves representmg other links, Sucha
structure is termed a "linear graph.' Figure 1la illustrates a s1mp1e network

having 6 nodes and 8 links. < | {

If A and B are d’i‘sti'nct‘ nodes of a network, an '""A/B path" is a finite set

of directed links that can be assigned an ..orderi.hg'M.i,,} Nl, i=1, 2, ..., m(@@m

being the number of links) so that M1 = A, Nin =B and N.i = Mi’ 1 for

i=1,2 ..., m-1, AandB aretermed the "initial" and "terminal" nodes, .

of the path respectively .- Figure ib represents a path from N to N5 since the

-directed links can be ar ranged in the followmg sequence N6’ N3, N3, Nz, N N 4

N 4 Nl’ N 1 Nz, NZ’ N5 A ,network is sald- to be "connected" if for every pair of

distinct nodes A and B there exists at least one A/B path. Note that if -a,&n‘et;w%rk

< -

o . is connected in this sense a linéar graph ‘constructed to represent the network is

a connected point set in the conventional sense of connectedness. In the remainder

of this paper all networks under consideration are assumed to be connected.
A "loop' in a network is a finite set of directed links that can be assigned
an ordering M1’ Ni" i=1, 2, ..., m, such that MﬁI = N:m and N‘i = Mi+‘1 vfor

i=1, 2 ... ., m-1.* Figure lc is an example of a loop.

Note that the same directed link may appear {Irnorie than "onc,ev;in‘fan A/B o

path or a loop and that both M, N and N, M .nray appear, If the same directed

link app"ears:’k times, it is considered as being enumerated k times in the set
! ‘l . N B - ’ ’,/; . .
of links th‘_at- defines the path or loop. D a /F’/’/// o
. .
*Note that a loop could be con51dered 4as an A/A path, In this paper it
_is never categorlzed as such, however -

o P
Pa ” & O
N e
P!
N
v -,




d N6/N5 ch’a‘m
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Fig. 1-‘--Il-1ustr'ation.‘ of Basic Concepts
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| Smce the 11nks that form a path or loop may be arranged in, a sequence of

the form Ml’ M2' M,, M3, ‘e Mk 1’ Mk it is frequently convenient. to represent
a path or loop by the more concise notation Ml’ M, 2 { . Mk’ where the notation -

‘repres’ents: an Ml/Mk path if M.l + ‘Mk‘ and a loop if Ml = Mk’ It should be noted,

- that this repré‘sent’atiOn is not in general unique, however. For example

fMl,Mz, M3, M M4,M M and M 4, Mz, M3, Ml’ M2’M5 both represent the.
same MI/MS path: since they‘ are ‘composed of the same 6 directed links.
An "-A/B: chain” is defined to be an A/B path such that the initial nodes
(and consequently also the terminal nodes) of its d1rected links are all d1st1nct
‘ Slmllar ry a "eycle" is'a loo; such that the initial (or termmal) nodes of 1ts
links are all distinct If 1nterpreted geometrically, chams and cycles correspond
to 81mp1e or nomntersectlng curves ina 11near graph Figures 1d and le

illustrate an N’ / N chain-and a c¢ycle respectively. Asa result of these defi-
o

,‘n1t10ns, a chain has a unique representatlon of the form Ml’ MZ’ . t k,

and the representat1on of a cycle is unique except for cychc permutatlon of its

11nks (For -example, Ml,M3, Mz, M4,M and M M4, M M3,M2 represert

the same cycle. )

< ZEE

CAPACITATED AND WEIGHTED NETWORKS

<

Ifa network has k undirected links, and a nonnegative integer termed a
'"capaclty" is assoclated with each of the Zk directed links, the network is termed
a "’capacitated »network. il ‘The capacity of;a"directed? l’i‘nk‘M',fN' is ‘denoted- ?b'y'

c(M, N).. The capacities need no‘t-.beusyzrynmetri‘c, i.e., it is permissible that

c’(M,’ N) -}:c(N,M) The link capacities serve as upper limits' on the rate of ﬂow

- mty ¢ 4 S e ok e 4 e S A o e ke 8 b e A ety Skt n in < o e o et e ot e w BT




il

through the feorrespond:ing I'inks: in the subsequent: discussgion. f the network is
a mathematical model of a. tra'ns‘portat-ion‘ network, . .'%'.."ﬂcjapacviti,eSa might “hav;e

8

the d1mens1ona11ty "tons per un1t time." ‘

If a nonnegatwe real number called a "length" is associated with each of
‘ Zthe 2k directed links of a network, the network is congidered "weighted "' The
,length of‘a directed link M N is denoted by l(M N) Here again the 1engths need.
not be symmetrm . These lengths serve as We~,1ght1ng;factors"applied to the
amount of flow 1n each link in the subsequent di?snggibn. Depending on the ap-

plication, the length of a directed link may be an abstraction of physical length,

A 4 : ‘cost per unit of ﬂow from the initial to-the terminal node of the link, or some
}

othey“attribute.

O

<

Ifa repr’esentsl a path or loop in a weighted network, the “length of‘a",

denoted by Ke), is defined» ;S‘*

o) = 21647%) | ’ b
o ) ,

In par,ti'cﬁl'ar if @ is the M/ N path consisting of the single directed link M, N,

I(a) = l(M, N), thus there is no numerical ambiguity in using the symbol "1"

forboth thefcgncepts of link length and path or loop length.

o

&

“*In this equatlon a.nd in other pluces where there is no ambiguity, the'
notation E 1s used in place of the more cumbersome notation %
M Nea:

) o ' C

N
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~ Note that since f(M, N) = -f(N, M) it is’ sufficient to prescribe the values of f for

LINK FLOWS AND FLOW PATTERNS

v‘Cohs‘ider‘ no& the concepts of link flows and flow pattefns in a network. -

A flowin a link is a. nonnegative integer p associated w-ith a particular orienta-

tion of the hnk If the flow 1s des1gnated as being from M to N in link (M, N), a

:ﬂow f is designed for each of the dlrected links. M N and N, M as follows

L) 10T B=p (W =p
Thus the flow value associated with a directed link is negative if the direction of

the link is counter to the a-s'si-cg'ned direction of the flow; otherwise it is po}s-i‘t\"ivev,i

<

s o

“an enumerating set in order to establish flows. for all g“fi\'rected links of the'net-

work. If f(M, N) = f(N,M) = 0, it is 'stilfl‘COr;Qenient in some contexts to

arbitrarily consider the flow as being "'from"' one node "?:o"' the other.

7 If a flow is assigned to a link (M, N) of a capacitated network, the ﬂow 25
is sa1d to be "feas1b1e" if : . o i
i ~c(N, M) < £(M, N) < (M, )

L or equivalent if

=e(M, N) < £(N, M) < o(N, M)

=z N

If £(M, N) ="C(M,) N), the directed link M, N is said to be "saturated" by the flow.

A flow saturates both directed links M, N a’nd’ N, M only in the trivial case where

c(M N) =.¢(N, M) f(M N)

(M N) and f(N M) = c(N (N, M), it follows that c(M N) + c(N M) = 0

*For if £(M, N) N

. ) =
since f(M N) + £(N, ,M) = But since both capacities are nonnegative, both must be zero.

i3




It'is important to stress the fact that one cannot independently assign

" flows to each directed link of a pair, although it is evident from the preceding
" definitions, because f(M;N) and f(N;M) are two’ equivalent representations of
the same flow, which is best thought of as a.variable assigned to the undi'rected

S ERS

Jlink (M,N). |

‘Consider a network in which a flow is assigned to every link. Then if "

- anode M is fixed and any enumerating set S is selected, the expression’

Z F(V,N), M fixed
J s

| represents the total flow away from node M minus ‘:{c‘he total flow into node M for

Ay

L

those links whose representative in'S has M as ,ini‘\tlf’il node. _Similarly

5 Zf(P";M'f)‘; M fixed

S

represents the total flow into node M minus: the total flow away from node M

for those links whose representative mi‘S has M as terminal node, Thus the

ol ' function
Y(M) = Z f(M,N) - Z £(P,M), M fixed
" & .
S -8 e

Rz

represents the total flow away from node M minus the total flow 'iiito nodé‘ M.

?; ‘ Y (M) is termed the et outprt at node M." The ‘fu'nétion Y is independent of

the ’énumer,ating set S since Jf.(M;N), = -f(N,M). If the representation inSof a

—V.‘ . ‘S FEE—— . -
] <
S10
S — S e o . '»‘ l\‘”
e e o B - S SR s
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v

lfnk is changed from M N to N, -. M the effect is me‘rely to ‘tra‘nsfer a term éfro'm

one of the above summations to the other, w1th a correspondmg change of 81gn

P except possibly A and.™, then it is refa.dir»ly shown that Y(A) = 1—..Y*((B);,: because
Zf(M,' N) - fo(’N', M) =0 : (1)
s S - |

since each M,NeS appears .oncein each summation. Also ZY(P) = Y(A), which
: . ‘ P+B

can be written as

< - . : ' .‘, | | :. ) - $ '
Ef(M, N) - zf(N! M) =Y(A) Rt
S S
Mi-B M+B .
Subtracting Eq. 2 from Eq. 1 ,
. X ! G
) Zf(’ng, N) - zf(N,'Mj ) = -Y(4)
- . "sg' o “\ s . " N

but the lefthand S1de is Y(B) by definition. If Y(A) > ‘0 the assignment of flows

‘1s termed an "A/B flow pattern " Y(A) is called the "value" of the flow pattern,

(203

A is termed the "source', and B is termed the "smk noIf F represents an A/B

flow pattern, the symbol V(F) is also used to denote 1ts -value. V(F) is neces-

' every node P, the assxgnment of flows is termed a "zero flow pattern‘ " (In

. ‘some. contextfs 1t is convement to cons1der & zero. ﬂow pattern as an A/B flow

/ o ‘\\

o pattern wbose value ig zero ). To summarlze, an assignment of ﬂows to the

. Ifa ﬂow is assigned to every. link of a network and Y(P) = 0 at every node.

sarily an integer nm‘ce all link flows are integers by definition. If Y(R) =0 for .




: _Llementary Flow Patterns SR '; .

lmks of a network is a flow pattern in th1s paper if, and only if, Y(P) +0 for at’

2

most two nodes

If F F » F, are A/B flow patterns (some or all of which may

2, . o
‘have the value zero) and if fl(M, N), 2(M N), o ey ‘fn_(M,N) represent the

corr\espondmg: flows in an arb1trary directed link M,., N, then the patterns are
said to be "conformal” if for every link M, N either f(M, N) > 0 for
i=1,2 ..., norf, (M, N) <Ofori=1, 2; ..., n. Expressed d1ff9rently

they are conformal if there is no link such that there is nonzero flow in ohe

i
./,e'

e

direction relatlve to. some F and nonzero ﬂowmin lf” other d1rect10n relative to.

_some other F,, ¢

¥ .
An: algebra of flow patterns can be defined. If F and G are A/B t‘low

patterns (where the poss1b111ty of zero f] ﬂow patterns is included) and f(M, N) N) and

g(M N) denote the correspondmg ﬂows in an arbitrary directed link M N the

sum of F and G, denoted by F@®G, is defmed as follows:; for every directed

‘hnk M N let h(M N) = f(Mﬂ\ N) + g(M N) The values of h then determme the
link flows of F®G. Clearly F@G 1s also an A/B flow pattern, whose value

is V(F) + V(G).

S1milar1y FOG is defined by the relation h(M, N) = f(M N) = g(M, N\ In
this case if V(F) > V(G), FG is an A/B flow pattern of value V(F) - V(G)
the contrary case FO) G is a B/A ﬂow pattern of value V(G) ~ V(F).

.‘i/

Certam elementary ﬂow pattems corresponding to paths” and loops play a

central role in the subsequent development If P is an A/B path or loop, if a o

I




‘ positive flow of m units is asslgned to each link M N of P ( and necessanly also
a ﬂow of ~m units is assigned to N M), and if zero flow is asmgned to all other
l'i-nk_st of the network, then this assignme“nt is ealled an "A/ B path (or loop) flow"

of m units. If m = 1, it will also be demgnated a "umt path (ot loop) flow," The.

“,x‘

notation m(P);or, m(Ml, Mz, ey ) is used to denote such an ass1ghment of
flows. If P is an A/B path, it'is readﬂy seen that m(P) is an A/B ﬂ'owjpattern N

' of value m. If P is a loop, m(P) is a zero flow pattern, Chain and cycle flows
are, of course, special instances of path and loop flows respectively. The fol-
IOwing lemma demonstrates. that a unit A/B Lpati_iv flow can always be decomposed,

" . S 5 -
‘in a certain sense, into simpler components.

Lemma 1: If P is‘an A/B path, then 1(P)= 1(C)®Z,
where C is an appropriate A/B chain, Z is
a zero flow pattern, and 1(C) and Z are ” e
conformal. B v G e
Proof: P canbe represented as Nl’ N2, . VV Nk where N1 <A a:il\d/
Nk =B, IfPisa cham the result follows immediately by takmg C =P and |

- lettmg Z be the flow pattern that consists of zero flow in every link of the net-

"work. If P isnot a chain, there is a f1rst 1ndex i such that N = N, for some

3,

Cj<i. Itis read11y seen that 1(P) = 1(P, )® 1(8,) where P, is the A/B path

1
Nl" e o e s j’ 1+1, . oy Nk andS is the cycleN N] 1 . oy Nif'
: *If a given link M, N appears more than once, say R times, thenm-R .
units of flow are to be assslgned to M, N.. .
: B i \
; oo :
~ 13 v «




e » |
*yE P1 is a cha:ln, the proof is completed by settmg C= P a.nd Z = 1(Sl) If s

is not a chain, the abowe process can be repeated expressing 1(P1) as 1(P: )‘ 1(S

) 80 that 1(P) = 1(P, Z)L/ l(Sl)xJ 1(82) So long as each successive path P obtained
‘1 by th1;s process is not a chain, it is always u‘possible to '~'e‘xt‘ract" another path
© ;P ,q 80 that l(P )= 1P VE IS, L) and 1(P) = +1)Cl(Sl)C z@-le(‘sm 2

But clearly the process must terminate since. P 1 has fewer links than- P It

follows that at some stage M, “PM isa vchavin;,/, Then ifC = PM and

. ZELE)E. . a@l'(fSM'), one has the desired expression for 1(P). Z and 1(C)

are conformal since every link of P, and of each of the S_ 's is directed in the

M “
/j,,_;wi‘sam'e sense as the co.rresponding’ link of P.| rThis completes ghe proof.
‘Although this result is needed .only in the form stated, it is true that in
general m(P) = m(C)L VAR wﬁgre C is the same A/B cham as above and Z' is _
S\ obtamed by multiplying all- ﬂow;\of VA by m |
Lemma 1 is used to -establish the following general result concerning the
decomposition of any A/B flow pattern. | 5"
, Lemm::;t~ 2; J If F is an A/B flow pattern of value k>0, A
S . then | “ “
F = 1C)@UCHD. . .OUCYDZ,
where the C,'s are appropriate A/B chains,
Z is a zero ﬂo(;} .pattern, and Z and the ,
HC)'s are conformal. | B

i o Aot e Tt oy s 31 bt s k] e e R e B3 €0 e i 54 e sl A gt 48 A VT 230 8 S et o vt g ot e
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- 1link in passing from F, . to-F,

:’Phus N. =B at some stage J. But then 3

The ‘proof involves a constructlve procedure that produces: the de51red
decomposition and makes use of the evident fact that if Y(M) > 0 for a node M

there is at Ieast one link M N havmg posltlve‘ ﬂow i.e., there is a link having
flow directed away from M 'This property is true for any asmgnment of flows

PR

to the links of a network whether the asmgnment ‘constitutes a flow pattern in

RS

the sense of this paper ornot. (In the course of the proof F undergoes a series

of mod1f1cat10ns that at intermediate stages determine flow asmgnments that are

‘not patterns )

Proof: Since Y(A) =k >0, alink A,N_ N _having positive flow ‘exists. Let !

F denote the system of flows obtained from F by reducing the flow in A, N ‘Nl by

one unit (and consequently increasing the flow in N, Adby one unit) and leaving

1’
all other link flows unchanged Then Y/A) =k-120, and.Y(N‘ ;) =1, relative

to F,. Hence there is a link N_N,, with positive flow. Let F be the system of

1’ 12

ﬂows _obtained from F by reducing the flow in N by one unit. Then Y,(N:l_)x =0

1
again, but now Y(Nz) =1 rel‘atn’re to F‘ (unl‘esss- N2 is B)' - Sc»long as each suc-

cessive N, is not B, another link’ N N3 +1 w1th p081t1ve flow can be found, be-

3

cause either N, is ‘an mtermed1ate node, in which case Y(Nj) =1 relat1ve to. Fj

} .

or else Nj AL In the latter case Y(N) =k, ' (This is true because the preceding
)\

link Was, of the form Nj 1,A and when a unit of ﬂow was subtracted froin this

Y.(‘A). was transformed; back from k - 1 to k.)

Fj1 oy

In any case Y(N ) > 0 if N, # B. However, this procedure must termmate since

: ZOm

at each stage a umt of flow is subtracted from some link havmg posmve flow.

FN
Y
‘-‘\\\1‘/

4

g s “ G v

\Si?:f/f «d . —
v F F@l(A Nl,
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LT

o

-gincé the last term simply represents the collection of unit link flows removed

from. ' to obtain F.. More;)ver F_is an A/B flow pattern of value k‘!:‘ 1, be‘ing:

J Jd

the difference between F and a umt A/B path flow. Ifk-1>0 fhe above pro-
\;

cedure can be applied to F decomposmg it into an A/B. flow pattern of value

k - 2 and a second unit A/B path flow. Ultimately

0

LFe2@1R)B1@)D. . .B1@y

where Z! is a zero flow pattern, the Pi’Sﬂ are A/B paths, and the nonzero link 4

“flows in each of these component patterns are di'récfted the same way as in F.
Applying lemma 1, each 1(Pi) can further be expressed as‘1(C,)& Z,, Where

N “ C.A is a chain, Z ; & Zero flow pattern, and all link flows of I(Ci) and Z‘i are.

A

directed as in P Thus R
O D4

F=2@UCHELCHE. . . BLCY
where Z= 2'(% Zl(’i Z 2@ e E Zy and the component flow patterns are all
(/ ‘ - B

conformal. This completes the proof.

Feas‘ibrleﬂli'_‘lr‘i')w Patte:éns o

A flow pattern in a capacitated network is said to be a "feasible flow

pattern" if the flow in every link is feasible, i.e., if

-c(N, M) < f(M,N) < c(M, N)

for eve‘ry directed link M, N, There are only a finite number of distinét feasible‘

« flow pafterns that can be associated with a given capamtated network. Lettmg

C= max ¢(M, N N) and Lbe: the: number of undirected links, there are at most

e S st ——
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PN oL
) ,l 2C+1 disti:‘nci‘.- flows possible in any given lmk viz., flows of 1,:2,°. ... , C
ounits in either direction or zero flow. Thus there are at most. (2cC + 1)L ways .
| to assign ﬂows to a11 links.* Of course most of these assignments are not flow
-patterns in the sense of this paper '
Lemma 3, which establishes a useful result concermng feasible i’low ) N ¢
% patterns states: o
Lemma 3: If Fis a f’easible A/B flow pattern and
Gy, Gy, © O Gk are conformal A/B &
flow patterns such that F& G L) ZL/ .C Gk
is feasible, then FES is also a feas1ble i
3 A/B flow pattern if S is theé sum of any
subset of the G;'s. P ”
Proof: Letf, Byr Bgr -+« -0 B and s denote the corresponding flows in
an arbitrary direci:ed 11nk M, N. Since the 'g‘i's are all nonnegative or all non-
. positive, one of the following relations is true: \‘
| | f<f+s<f+rg +8*. .. +g§ e
N < .
. ¥ or o P
- £+ By tBgt . - ¥ G < f+a<f i} -

P . N ,
S p /
*More precigely there are exactly ll[c(M N) + c(N M) + 1] ways to /

assign flows to all links of a network, where the product ranges over all = o0
undirected links o, N). S
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|
e

1

U e
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The feasibility agsumptions of the lemmia also imply that both the following

relations“hold:
| —e(N,3) <f<e@,N)

and '
~c(N; M) <f + Byt Bt . LTS c(M, N)
. ‘ )

It follows that -c(N,M) <f+ s <c(M,N);i.e., the flow in M, N c“grresponding to

the flow pattern F@S”is‘ feasible. But since M, N was arbitrary it follows that

This completes the proof.

NS

this flow pattern is feasible.

(e

< !

Using lemmas 2 and 3 the self-ev1dent fact can be rlgorously established

° that 1ﬁ a feasible A/ B flow pattern of value k exists 1n”a capacitated network,

<

P
N

- .for every pair of distinct nodes A and B.

7 N\

feagible A/B flow patterns having values 0, 1, 2, , k exist. For if Fk is
. @I(Ck) ac-

cording to lemma 2. If F, is defined as Z@l(cl;)@“. . ‘®1(C{f)' for

feasible and V(F,) =k, F;_canbe expressed as Z{& 1(C ) . .

i=1,2 ...,k and Fy= 7, according to lemma 3 F, is feasible for
i=0, 1, ... ., k. Moreover, since Z and the L(C)'s are chfoi:mal, the F.'s

) 4
are nesgted flow patterns in the sense that the magnitude of flow in each undi-

rected link is moneétonic nondecreasmg and its direction remains the same, as

iincreases from 0 to k. . T L S

A "maximal A/B fl_ow pattern" is a feasible A/B flow pattern F whose

[ ¢
value V(F) is a maximura. Since there are only a finite number of feasible flow

pa,tterns ppssible in a ~capac1t_a§gd network, -a maximal A/B flow pgtternme;dsts

O o e s s v oy % v 1 okt 2 ke oo e

(Note that the flow pattern that consists _

N R L i s e o




o) < e

o

” ~ of zero ﬂow in every link is necessarlly feasible a.nd can be cons1dered an A/B
) flow pattern for any distinct nodes A and B. ) The value of a. maximal A/B ﬂow

pattern is called the "A/B capacity of the network."

"Cost" of a Flow Pattern | . :

Congider next an A/B flow pattern Fin a weighted network F is associated

P

~

‘with the nonnegative integer T(F) defined by the relation:

, T(T‘)* Zilf(M oo o
| £ ‘»

where § is an arbitrary enumerating set and 1'(M; N) is‘? defined as

1, N) = 1 N) i £(M, N) > 0

and

L', N) = L, M) if £, N) <0

Thus T(F) is obtained by multiplying the fiow in each link by the length,

‘ 7
measured in the direction of the ﬂow,}; and summing over all links of the net-

work. If 1{(M, ‘N)» is interpreted as. thei\‘cost of moving one unit of flow from M to
N

N through M, N, N, T(F) is simply the totaL cost assocmted with the flow pattern F.
/s

T(F) i8 necessarily nonnegative. LY

//

The following lemma. expresses an 1fnp'\1;§9nt‘ rgla‘ti‘dn between the costs
Y i / | '

of certain flow patterns. ‘ oo

Lemma 4: ’ If F, G, and/ivaare A/B flow pat\t‘:fe:rz'i\s\ and G and
] : H are conformal, then AN 3

| TEECEH - TEDE 2 TEEH - 1)
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Proof Let.Q = T('*f G@®H) - T(FC Gy = T(FCH) + T(F) It is desired
to prove that Q3 > 0 under the assumptions of thls lemma. Let S be an. fenumerat“ing‘
set chosen in such a way that f(C D) > 0 for all C DeS where £(C, D) D) denotes the
ﬂow in. C C,D cogresponding to pattern F. In the following discussion an arbltrary .

e C 'C, DeS is fixed For- concmeness the flows in’ c, C,D correspondmg to the three
patterns are denoted by f, g, and h and the lengths 1(C D) and 1(D, C C) byl and 1' )

respectively. If Q(‘C,D)‘ ig defined by the relation

o " Q(C, D) = |f +g+h|x -[f +g|xy-E+nlxg+ |f]x,

where. ea;c‘hxi is 1or1', depending on whether the cof‘reSponding' ‘expr,eSSion

' , : within absolute value signs is positive or negative, Q(C, ' D); represents the con—

tributlon to Q correspondlng to C D and Z Q(C D). = Q. Thus it is suff1c1ent

7

\C DGS
to show that each Q(C D) > 0. l”;\
One of the following sets of relations. holds:
£>0,g20,h2>0 " (3)
or | O
£>0, g<0, h<0 @
o . since G and H are JQOnfo‘rmatI. S

1t relation 3 hoids, Q(C,D) = Ergrhl-(rgl-@rhls £-1=0.

Ifrelation4holdsandiff+g+h>0 thenf+g>0andf+h>0also and z

\\

(C D) reduces to the same expression as for relation 3, having the value Zero.

A
o

/
AN
s




Tt remains to invest1gate the case when relation 4 holds and £+ g+ h< 0

In this case Q(C D) reduces to one of the following expresslons, dependmg on the‘ ‘

DN
NN

,relatlve magnitudes of f, g, and h:

&

*”(af't g+~ (f+g)l- (E+ml+f-1

~E+ g+ Bl + E+ gl - E+h)L+E- 1
~E+g+rml'- f+gl+ E+'+f-1
, SErg R E+ gl EF I A1

AN
When simplified these reduce to the expressions. .

~(f+g+h) 1'+1])
-h@r+
v gt o 3
£ + 1) | |

These are all nonnegative since f+ g+ h <0, I'+ 1> 0, and the conditions of

D)

..~ relation 4 hold. Thus Q(C,D) > 0 in all cases. This completes the proo_f:.Ti
e "7'},}‘% ’, i s Y] ) ’ | ‘ .
A . Vi
Thus the increment of cost resultmg from adding H to F@ G is at least

as great as that resulting-f ‘rom adding Hto F alone (Thie result fails to hold

if GandHare not conformal) " I A

Ideal Flow Patterns o ‘ TR

Finally consider a network that is both capacitated and: weighted and ®
let A and B be two fixed, distinct nodes of the network If a feasible >A/ B flow

‘ ﬁ,pattern of value k exists, then one, call it F ensts sucu that T(F) is mintmum, =5
since the feasible A/B patterns of value k are ﬁni e in number. Such a pattern , |

5]
t; ! ~
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‘ is termed an "ideal A/B flow pattem of value k," If the network is mterpreted
asa mathematical model of~a tra.nsportatmn network an ideal A/B flow pattern U
~ of value k can be interpreted as a pattern that moves k units of flow per unit
time from A to B at mmimum cost, - Thus 1dea1 flow patterns are in this sense
"best" flow patterns. © .

The following lemma. estabhshes an importation relation between certain
ideal ﬂow patterns. |

Lemma 5: ’ If F F., and F. . are ideal flow patterns

=17 “i* ¢ T
- whose values are i-1, i, and i+1 respectively,

then

b

a o T(Fi+1) -

I(EY 2T, - T(F,_)

>

It

Proof: Fiﬂfl“'Fi,—l is an A/B flow pattern of value 2. As such it can

7

(according to lemma 2) be expressed as 1(0-1)@1(02)@2 where Cy and Cizl'arex

A/B chains; Z is a zero fiow pattern, and 1(C 1‘(C o) and Z are conforn“aa?l

i

Since F,_ 1 and[ F 1@ 1(Cl)O 1(C Z)U Z] are feasible patterns (the latter being

. simply F,.),

Cl(Cz)] + T(F,_ 1@ Z) - T(Fl - But F;_ @ Z is an A/B flow pattern of value

it follows (according to lemma 4) that T(F ) > T F C 1(C

S - 1=1 and is feasible- (accordmg to lemma 3). Hence T(F IO Z) - T(F P> 0

since T 11 18 1dea1.sf Tt follows that L : " B <

:i‘(jF p) 2T Fi‘--?l‘@l(CI‘)@I(JC‘z)} |

] | , Applying lemma 4 again |
M F, 101(01)(J1(Cz)] > T{ F 101(01) + T(F,, 101((;2)] - T(Fi 1)

22
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Btit‘ F 1(01) and Fi 1\, 1(02) are A/B flow patterns of value i and are

ff,eu_a_siblé ;(:according to lemma 3). Since F, is ideal, T[ F, Ul(cﬁl > T(F)

pid TUE,_,B1(C,H > T(F,). Hence

T(F +1) 2 2T(F - T(F;_)
But this is equivalent to the. ifiequality that was to be established.
< - ) ) : ) ) '\\)‘;\
A sequence of real numbers a5 ?‘1" 8y, ,\fr » 8y 18 said to be convex L e
if ) \y . ‘:A‘X:"\x N
N . N S

- a. >a, - a, .
a‘41+1 i~ 8’1‘ a1--1

fori= 1, 2, .. . k-1. If FO’ F1 1'2,

of values 0, 1, 2, . .,,,0., , k respectively, where k is the A7B? capacity of the net-

\:\/\ ,» Fy are ideal A/B flow patterns

work, it follows that the'.sequenc,e T(:Fo)", T(Fl), ce e ‘T.‘(F ) is a convex

sequence of nonnegatlve real numbers, the first of which ig.zero. [ The flow -
»k

‘pattern FO, Whlch assigns zero ﬂow to every link, is. clearly ideal, and

T(F

“be ccns1de};ed. as the "A/B cost pro,frle" for a given network. The remain&gr of C))

0 =0

In a certain sense the convex sequence T(F T,(Fl),. C s T(F‘k) can

(8

this paper is devoted to developing a general method for _deter,mi_nihg the. A\/ B cost

pr,ofile: for a given network and given nodes A and B, and for finding sbe’cific

N e . o S,
ideal flow patterns posses\s'_;’»ﬁ”g‘ these minimum costs. The problem is precisely

defined in -théff next sect’ion

As a matter of mterest note that given any finite convex sequence of

nonnegatwe real numbers ao, 9‘1’ az, P By anetwork ex1sts havmg this
23 _
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sequence ds its A/B ;mét 'pr.orfifle\., In fac‘?t the network of Fig. 2 has ﬁhe. desir,e‘d'
properties. In this figure the numbers ‘in’di'cate {he: Iengﬁhs, in both directions,
of the corresponding links., All link capacities are assumed to be one unit, If

1g<ign, the (in thi"s’, case unique) ideal A/B flow pattein of value i consists of -

. ‘assigning one unit of flow from A to B in each of the paths A, i"sz,;»B,ﬁ j= ‘1'_1,. 2, ..., 14,

-and assigninngero flow in‘the relﬂ;i(r_;ingf‘li‘nkss Clearly T(F) = a; for this pattern.

(The intermediate nodes Nl’ N2,,, .

] with the requirement that at most one link join two distinct nodes.).
S e , 0 ‘ TR &

o $o Nn are introduced merely to conform

S

/ /,1 : , A0

O ]
Fig. 2-~A Network Having A Given A/B Cost Profile
2%




‘ T STATEMENT OF PROBLEM AND SOLUTION IN PRINCIPLE.
, . . - i
FORMAL STATEMENT OF PROBLEM ©
W@ - In the remainder of thig paper the netjv‘s‘jzork under consideration is
‘ eS'Bilﬁled‘ to bé‘j’:cof}lnected, weighted, and ggi)aoitated' and to have the:'propeﬁy
. that for every cycle S, l(S) > 0 ’ R
The problem of immediateconcern can be precisely stated: -
Given a network of the above type:: and _=
two distinguished nodes A and B, produce a
procedure that will " : o
) é]a)“ determijne the A/B capacity k fof
- & the network; o
%(b); determine a specific ideal A/B flow
‘patternGF‘i of value i, for i = ‘1, 2, . { , k; and
) " () always terminate in a finite number | g
of steps. |
= s Network flow ;prob'lems of various types have been the subject of
eons.ioe‘rable» elit/udy and a number of procedgres having property (c), that can -
"ibe‘. used to solve problem (a), or".(b) for::iny vspeeified v_alu’e of the ﬂ‘ow :péttern,
exist in the hterature Reference is made to some of thesge after the present
E procedure is deflned and 1ts validity estabhshed h |
In this sectlon a procedure solving the above problem in prmc ple is
o glven accompanied by the proofs requ1red to estabhsh its va11d1ty The
F 25
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development is incomplete in oné respect; *however, Thétassumption i"s. made
that it is possible to des1g'n an algorlthm for finding A/P chains of a certam
typei.‘ The next section of the paper produces this algorlthm which completes

the development.

“AN EXAMPLE - .

Y , -

'i‘.he following example motivates the central concept involved in the
p‘r‘oce'dure,,, viz., tF:’éieffectifve- length of a chain.

Consider the network shown in Fig. 3a. Here A, Nz, Ng, N, and B
represent the nodes, and there are seven links as indicated. The numbers above
and Ihelow \ea‘cf“h link represent its length and capacity respectively. (These apply
to both diree,te:d links: i.e., the network is fully syjinmetric.‘)z An ideal A/B

flow pattern of value 0 is of course the pattern FO , which assigns zero flow to

every link, The unit A/B chaln flow F, = - 1(A,- N,

2, 3,‘ N4, B) is-an ideal patf

~\+ern= of value 1. I happens to be the only one for this network. Note that

lmk N, B 4 B limits ﬂow to two units at most. Thus-the cost proflle for this

network is 0, 4, and 10.

1° 2’ 3

\._,

T(Fl) =4 and that F saturates the dlrected 11nks A N N N “and’ N N, 4
| One p0351b1e way to augment F and obtain an A/B pattern of)value 2 G2

would be to add 1(A B) to F The resulting pattern is shown in Fig. 3b,

1’
where the numbers and arrows indicate the magnitudes and d1rect1ons of link
flows. But G2 is not ideal since T(Gz) =11, whereas T(Fz) =10, where F2 is
the feasible A/B flow ppattern.»shown in Fig. 3c. F2 is ideal, andthere is no

other ideal pattern of valué 2in this network. ‘F‘ ,'is also maximal since clearly

I
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it is highly desirable that the procedure developed involves using F once it is ‘

found, as the starting point for constructing F rather than constructmg F

i

i+1

It S

independently | {\x o | 4

i F is to be obtained by augmenting F in the example, the pattern:that

»must be added to F1 is FZC F, = 1(A, N N B) It i8 not coincidental that

‘‘‘‘‘‘

maxxmal,— an ideal pe!;ter_n- F.i can alwa.ys‘ be obta;ined by addmg an’ approprlate

+1
unit A/B chain flow. There may be other ways also, of course.. In the case of \
the present netw'ork‘, since F1 and F, are unique, it follows that F2@ F1 had to

be a unit A/B chain ﬂow

] Once the above result is rigorously established, viz,, that it is suffic1ent
14 = (&

to consider patterns of, the forin F, CI(C) in generatmg F, it remains to es-

i+1”

tahhsh a, simple criterion for determining which chain to use and to develop a

syst:\ﬁfatio,method% for finding a chain satisfying the criterion.
Consider again the chaing involved in generating GL _a.nd Fz‘: from F1 in-

B respectively.

the example. These are C =A,N,, B N4,B and 02 A N3, 2, N4,

In terms‘v of length C is preferabl'e smce I(Cl) = 7 whereas | (Cz‘)ﬁ' =8, In

terms of increments of T, however, T(Gz) - T(F 7 and- T(rZ; - T(Fl) =6,

- Thus C is effectwely shorter This notion is now made general and precise
LA,

&

1 ° EFFECTIVE LENGTH - v

. ~H F is a feasible A/B flow pattern with associated link flows denoted by

/l ,f(M, Ny, ‘vghere. M,N is an rarbitrary'u&i,rected‘ link, th~e»~» "effective lfength':of .

e et e s o it a0 e« e v i<+ s s sbren oo e e 1 y1e2ons e & et =1 S o b o
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M, N relative to o, denoted by e(M N .F), i8 defined as:. //

< f= 1L N if 0 <f(M, N) <c(M,N)

e(M, N;F)(= -1(N, M) if {(M,N) <0

PRI
e TR

If C dendies any chain or cycle, the "effective length of C relative to F'',

denoted by e(C;F), is defined as:

’ e(C;F) = 7e(M, N;F)
i o
. <

Note that e(M N; ;F) = if and only if F saturates M N and consequently

€(C;F) <= if and only if no link of C is saturated. This leads: to the following =~
result: o G
Lemma 6: If F is a feasible A/B flow pattgrn andC &
is an A/B chain or a cycle, F@1(C)is - l.; -
‘feasible if and only if e(C;F) is finite. | a

Proof: A link M, N is saturated if and only if e(M, N; F) =, Thusif‘

e(C F) ig finite, no link of C is saturated and so the flew in each link of C can

&

= be -increased by at least one unit.”"Hence F®1(C) 'is feasible if e(C;¥F) is finite.

‘ Conversely it FC 1(C) is feasible no link of C is\ saturated and e(C;F) is fmlte‘

“since e(M, N; F) is finite for M, NeC “This completes the proof.  © S
~ B , 2\\
< ‘ L2 v

*For convenience "«" is adjoined to the real number system The only
properties of this. element that are required are (a) if R is any real number,
R < ;. )itisnottruefnatw<-°~ (c) R + w0 =, (d) °°+°°-i’° and <%
_@min{s, @, L, w)me 0 .
. R A \‘,{/ o
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Lemma7 is a formal statement of the fact that the definition of effective

length satisfies the property suggesting its introduction.
Lema. Ts, B If F( is a -feat;ibl‘e A/B flow pé.tfem and C is
| an A/B chain or a cycle such that e(C;F) is
# - finite, then T[ F®1(C)] ~ T(F) = e(C;F).
. Proof: Consider any M, NeC. If f(—ﬁ_,_ﬁ) >0, where f denotes flow
- corresponding to F, then the flow in I_VI_,—I(T- c‘orr.e_sponding‘ to F®1(C) is f(M—,'I:I') +1
and T is increased in this link by the amount (M, N). If (M, N) < 0, the flow in .

: _ﬁ,—ﬁ corresponding to F{¥ 1(C) is f(_M—,_I\I') +1 < 0 and that in N, M is ‘f(N,,»M) -1>0:
'_t'hu'sk‘ T is dec‘reased’ in this link by I(W) units or increased by -‘1'(‘1\—3,_'—‘1&71_)‘. In
either case the increa;é in T with respect toﬁ—N ‘Aeq‘ual_s e(l\—l_,_l\'f,F) as defiqed
above. Since M, N was arbitrary, the result foilows.
' Ihe: ‘folléwing result, whic'l;ﬁis' an inmimediate conse'quqence‘ of lemmas 6
and 7, piaj;.s. an important part in tﬁeﬂ next section. |
&

; Lem;na 8: , If Fis a.n ideal A/B flow pattern, then Y

= e(S F) >0 for every cycle \) © i
f.i\\'\ Proof: According to lemma 7‘ T FO1(S)] K”;:}‘(F) + e(S;F). }f e(:Si\' F) <o

1t follows that T{ F@; 1(S)] < T(F) But FE1(S) is a feasible A/B flow pattern

according to lemma 6 and has value V(F), whlch contradlcts the assumption that :
o // .

.

F is ideal.’ t\i , o S
\i\ Fuln ) 7 T
E;{, ‘:_/’\ ") ]
. . '(f{
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The eet\:cf; maximal A/B flow patterns can be characterized in terms of

the notion of effective length in the following way.

.
’I,‘.I‘ieorem 1 _A feasible A/B flow pattern F is maximal if
< . and only if e(C;F) = « for every A/B cham C.

<o

‘Proof: If e(C F) is finite for some A/B chain C, then F@ 1(C) is feasible

by lemma 6, and thus F is not maximal Hence if F is maximal, e(C;F) = « for

all A/B chains. Conversely if F is not mammal,, a feasible A/B flow pattern G
of value V(F) + 1 exists.. According to Iex‘nmnf 2 GOF can be written as 1(C)@Z,
~ where C is an A/B chain, Z is a zero 'tl'lo‘w pzittern,,, and Irf‘C); and Z are conformal,
Since F:a.nd F®1(C)®Z = G are feasible patterns, it follows from lemma 3 that
| 'F@i(C)';'ie feasible also. &;Phus €(C;F) is finite according to lemma 6. Hence if

&(C;F) = = for all A/B chains, T is maximal, This completes the proof.

=

Since there are only a finite number of distinct A/B chains in a network °

h-u.,\,.,-

ﬂow pattern F, a chain C exists that mimm1zes e(C F). This chain is referred
" to as a "chain of shortest ~.effective length relative to F'', or as an "effectively

shortest" chain, It is a consequence of theorem 1 that ezCI‘;:I{,‘) <= 'if and bnlj'f“

if ¥ is nonmaximal . SR T
v An ideal A/B flow pattern that 15 nonma.xlmal can always be extended to
_an ideal pattern of va.lue one unit greater in a manner descnbed in the hext |
theoren; v
" 81
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. feasible, lemma 4 asserts that the following inequality bolds: /

_Theorem 2 . If Fis an ideal nonmaximal A/B flow
V> 'Pettem of value k and C is any A /Bchain
-of shortest effective length relative to F,

then F®1(Cy is an ideal A/B flow pattern
RN ‘ 3 =
" of valuek + 1.

Proof: Let G be an ideal“ﬂ'ow pa’ttern of"value k +:1. Then according to

lemma 2 GE F can be expressed as l(b')OZ where c 1s an A/B chain, Z is a

//

zero ‘flow pattern, and 1'(C') and Z are confermal» Since F and F(_Jl(u)OZ are

ooy

V.

U

T(G) - TIF@L(CY] > T(F® Z) ~ T(F)

But F@Z is feasible, accoifdi‘ng to lemma 3, so that T‘(FG-).Z) - T(F) > 0 sinee |

“Fis ideal Thus T(G) > T[ F®1(C"). Now F@'l‘(é") is also feasible, according

.
N Y

solving the stated problem. -HO‘we,ver,rg thgis*» would require proceeding in.

to lemma 3, and has value k+ 1, It follows that F@I(C') is also ideal, C' must

minimize €(C;F) because if e(C";F) - < e(C' F) it would follow from lemma 7 that

[ F.l(C")] <T[F@1(C') : It is also clear from lemma 7 that if C is any

A

other chain with e(C F). = e(C'; ), then F@®1(C) is an ideal A/B flow pattern

:‘whose value is k+ 1. This completes the proof

i

If the existence of a terminating algorithin that will a.lwa,y's; find a chain of

shortest effective length relative' to an ideal flow pattem F when F is non- - :

.maximal,and will give a suitable indication when F }s maxlmal is assumed

=
then theorems 1 and 2 could beé used to form tne basis for a procedure for 7

e

e

 increments of one unit of flow—a severe limitation in any practical problem.
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o

Fortunately the convexity property estabhshed in lemma 5 can be usedto “ "~

formulate a general method for acceleratmg the process |

Let F be an ideal A/B flow pattern of va»luev i in a network whose .A/]”.}‘ .
capacity is at leasti + 2. Then if the. A/B chain C1 mmlmlzes

e(C;F), F ', +1 = F .l(Cl) is 1dea1 accordlng to theorem 2. S1mi1ar1y

\ Fi+,2

the followmg equations hold

¥

1@ 1(02) is ideal 1f C. 9 mlnimlzes e(C Fi +1)\ Applying lemma 7

o T(F;

2)  T(Fyyg) = 0C5Fy0g)
\ AR , , ‘
1 : T(F,, ;) - T(F,) = e(Cy;F,)
But lemma 5 asserts that
T(F, +2) T(Fy, ) > T(Fy, ) = T(Fy

G

It follows that

e(C 3 O +1) > e(C i)‘

<

Now: suppose that e(C )= e(C Fi)'f" Since C2 minimizes e(C; F ), it

i+1

ﬂ .. follows tha‘tC1 is an effectlvely‘ shortest .chain relative to F also, 80 that
| O ~ o S

A -Gﬂ_z Fi+1@](Cl) @2(0 ) 18 an ideal A/B pattem of value { + 2. In

general once a chain C that minimizes e(C;F, ) has been found ideal patterns

Fip g - -

As long as. e(C i+k 1 ve((‘ iFy D it w1ll be true that F k‘ F, ke 1@1(01)

can be generated by adding 1(01) to each preceding pattern.,

5 1 = FiC k(Cl) is an ideal A/B pattern: of value i+k. Theorem 3 establishes a

-
b

fe

il

|




§ critenon for determining the ma:dmm number of times that the same unit chain -
flow 1(C ) can be added to an 1dea1 flow pattern before the resulting pattern

ceases to be: 1dea1

Theorem 3: I F is an ideal nonmaximal A/B flow pattern
» o and C is any A/B chain of shortest effective

length relative to F, then F®j(C) is an ideal
A/B flow pattern of value V(F) + j, for " ,
j=1,2 ... ,'Q, where Q = min q(M; N;F)

‘and q (M, {NﬁF); is deﬁned as

9]
o/

c(M,X) - £(M, N) if f(M N) >0 -

q‘(‘MfN;'F') ~£(M, N) if £(M, N) < 0

o
Proof: From theorem 1 it is known that e(M, N;F) is finite for every

M, N N’eC Referring to the definitlon of e(M N;F), two cases must be considered

)‘,:ct \ ) (a) +‘(M N) >0. In thls case e(M N; F) I— l(M N) In fact e[N N FCk(Cﬂ
| =1(M, ) so long)as FM,N) + k < cQLN); i7%. , 80 long as k <c(M, N) - f(M, N).~
i _'f';x 1(C) can be adde{d to F c(M N) - f(M N) -1 t1mes without altering the eﬁfective

Nlength of M, N. Thus l(C) can be added to-F one more time, [i.e., a total of

P}W T q(M N ;F) timed before the effective length’ changes In~ this case M, N»i,s

saturated and ef M ; F(‘)q(c)] = e, o

A

L : o2
\)) ga < o ,»],}A e U
NS

<(b) £(M, N) < o h In this case e(M, N; F) = -1(N M). ﬁln fact e[ M N FOK(C}

C= -l(N M) 80 long as k < -f(M N) Thus the effective length of M N changes only

\ atter addingcl(C) to F, -f(M N) times, which is the same as q(M N; F) times

o

1§
l

bR
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In this case the ﬂow in (M N) is then reduced to zero; and tbe effective length
of M, N changes from ~1(N M) to l(M N) \ — S

New if Q is taken to be the mmimum of the link q's, it follows that for

=L 2...,91 | -
& ' | qcmeﬁwﬂ=ﬂ%ﬂ

since,thls relatlon 1s true for every directed 11nk of C. But it follows from the
remarks 1mmediately preceding the statement of theorem 3 that so long as the

effectlve lengthof C remains ccnstant the addltion of 1(C) to each successwe

A
ki

i pattern generates another ideal pattern Thls completes the plOOf

PROCEDURE

)
o

The e:ri"stence of an algorithm, which is referred to as rhe '?effectivé’%
length ﬂggﬁM'f, ‘i':s assumed. As input it re(1uires an enmgerajting‘iset S
characterizing the network configuration and an ideal A/B flow pat-t;ern F; of
‘Value i, des’cribed‘ by itemizing the flow f, (I\TTI') for all M, NeS. As output it

produces the effective distance Di

fromAto B relative to F * IfD <® (i. e.,
: "'”"“ ’\\& if F is nonmaximal) it also produces a speclfic effectively shortest chain C \

//

N A procedure that will always solve the stated problem can now be

formally presented. The procedure involves \repeafi‘ng;‘the, following steps as . ’

- *"Effective dlstance" means the effective length of an effectively |
shortest chain, ) , _
j} LY Ca \ B
6
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many timeS‘ as required to reach a maximal flow pattern. At the start take

i= 0 and take :al‘s‘ F0 the ideal A/B flow p.a:t‘:tern for which f, (ﬁ) ,{=°’0§ ior all
(e)», Apply’{;thé effective ‘d'iust'ance -algorithm to ‘the network with flow
pattern‘ F If D —%}w (1 e., if F 1s max1ma1), then termmate the procedure

because the. complete solutlon to the problem is. obtamed Otherw1se perform

:s_tep- b

(b) Let C; be the effectively *shortes’tf chain found in a. Sca.n ihe¢ hnks

| ‘\\\ \\ ¢
' of C, and determine Q = min [q(M N); T} as defmed in theorem 3%
i o / o
: 1 (c) Construct an 1dea1 A/B ﬂow pattern F,. ke of value i + k as follows” .-

1 fork=1,2 ..., Q
For évery M NeS define f k ‘ .

7~ R

. () f,+kif M, NeC;,

)

(@ £ - kif N, MeC, ﬁ

3) f otherwise

T J ) Then repeat (a) with i + Q; replacing i and F. +QV replacing F,.

Theorem 3 states that the flow patterns obtamed in th1s way are ideal,

and. acoordmg to theorem 1 the process will termmate When and only when

after step ¢ is completed,, the resulting F Q is maximal,
& i

Qo
. RELATION TO OTHER PROCEDURES

LN
I

e

Maximizing Flow. The principle of obtaining 2 maximal flow pattern by

adding a succession of unsaturated A/B chains is well known, I,)fant,zigﬁand:,




\ h

S ,AFulké"if‘sonlf":Pr’esent an efficient hand-computing schemeu}si‘ng' this pri’ri’éﬂi,ril'év,

>, o t

which is »appli'cable to any cap’a‘oiitatedénetwOrika‘ith sy.mmetri’c e'apaeitiés t eXceﬁ\’t*
, that ¢(M, N) = o if M =B or N = A]. Any procedure for determmmg unsaturated
A/B chalns could be made the basis for a ﬂow—max1m1z1ng process.. The. present

/

procedure isa spec1a1 instance of t‘ns approach since it selects from all A/B

chains’ ;C one that minimizes €(C;F).

it
1}

o

§ M1n1mizing Cost for Stated Flow. If k is a nonnegative integer that
. < \
o . does not excoed the A/B capamty ol the netw01l the problem of fmdmg a feasi-

f.«_\

ble A/B flow patte*n /F such that V(F) k and T(F) is'minimum is a special case
of the general linear-programing problem. Thus, in theory, a technique such

as th% simplex method could be employed. However, in complex networks the

number of variables and constraints is so large as to make such a general
approach infeasible. - | \\ ) ‘},12'

g Th1s problem is also a spec1al case”uf the class of network—ﬂow problems 2
known as "capac1ty—constra1ned transshipment problems. " Fulkerason2 describes
this type of problem and shows that it is equivalent to an appropr1ate H1tchcock

problem Thus any procedure for solving the Hitchcock problem could also be

employed.
© ' o2
F1nd1ng a complete Set of Ideal Flows. The problem of finding a family

of ideal A/B flow patterns, one for every feasible value of ﬂow is related to a

dynamic problem p"osed‘ and. 'solved by Ford and Fulkerson of thez RAND Corpora—

tion. 3 That problem’ deals w1th max1m1z1ng the total flow arriving ata node B.

<

by the end of T t1me periods. assummg there 1s no ﬂow in tra.ns s at time T = 0

{(The lengths of links are assumed to. be positive ‘i_ntegers and are interpreted

37




presented finds a famlly of solut1ons—-one for every value of T

. zero, the pattern F being decomposed could not be ideal.

P
-,

N
. ' % W :
as’ the number of time perlods requlred to traverse' the link<s ) The procedure

I/ o
(These B
solutions remain the same’ after a certaln value of T is reached.) The pro-

cedure involves finding static flow patterns in the network and it 1s shown that.

‘these flow patterns are ideal, ;at;!least when T is sufficiently ,larg_e., ’

Decomposing Solutions into Routes. Although the proc‘;eduré described

in this paper do€s not include a specific method for expressing the(:'(jri'dea.-l 'ﬂovy
patterns as the sum of conformal chain flows, * it is recognized th:t{ihiS'isi ‘
desirable if ort'e '\‘avants%a,n operational pla.n for troutii'ng’- shipmehts at m/;\mmum ¢
cost. Theje‘onstruction\‘e}mypl’oyed‘ in the proof of lemma 2 could be fc’;‘rmafiz,ed

I

_ into an algorithm for producing such a composition. ¥ However, efficient

schemes for decomposing flows exist. Specifically the labeling process

termed “'Boutine II" by Ford and Fglkerson3 performs th’is‘f‘lmct_ieh efficiently.

[ZS

*The example given at the beglnmng of the present section shows. that

the chain flows used to synthe ‘ize an ideal pattern are not necessarlly conformal.

TReferrmg to: lemma 2 the residual flow pattern Z is necessarily the
pattern that is identically zero. ‘This can be shown to be a consequeénce of the
assumption that every cycle C has positive length. I Z were not identically

<

BN

2};\




EFFECTIVE-LENGTH ALGORITHM B

‘STATEMENT OF THE ALGORITHM Y

WS

e Let F be an ideal A/B ﬂow pattern in a network, w1th lmk flows: denoted
\§ by f(M,N).. Cons1der the links of the network to be arranged in a sequence ’
e (M N ), i= 1, %5 « » « » L. .The algorithm consists of the as51gnment and
rev1s1on of certam quant1t1es, or "labels", assoc1ated with the nodes. It is
patterfned.;after the label:ing procedures employed by Ford and Fulkerson for ' &
solving various network-flow problems., For.dfi' describes a labeling process J

r

concerned ‘With finding an A/B chain C that minimizes 1(C) = = l(M’ N). The

o C
present algor1thm is an adaptatmn of that one, where the necessary modifications
: (F:a
were made to minimize Z e(M,N;F) rather than 2 1(M N). In aad1t1on infor-
C AC/ :

mation is carr1ed along that enables one to readily determine a spe01f1c chain

o " that minimizes = e(M,N;F). This is achieved by recording certain approach
C | o
links in the %&*me manner as. the labeling process of Ford and Fulkoxf,;“'gn.5
Formal deseription of the effective-length algorithm follows. o

i

(a) ‘Associate with node A the label D(A) = 0 and let D(N) & & l’ox‘ all

)
.other nodes. . . o :

*\\ -

(b) Cons1dering ea,ch link (M ,N ) in turn, perform the following fj)

s

{ .
ad justments: ' A //:,w.‘;,;_: N
BN ) . [ D : . wrl \\‘\ / K
{r
. 1y I D(Ni) > D(M ) + e(M//N 1F)y, replace D(\Ii) by this.

smaller quantity and record Mi’Ni as the ,approachf,llr,k’c,u‘_rrently .assomafed

w1th node N . '
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- (29 EDEY) > D(N\; * e(N v M' ;F), replace D(M,) by this smaller

quantlty and record N M as the approach link assoc1ated with node M

(3) If neéither of the- foregomg 1nequa11tles holds, make no change

Repeat step b until the stage 1s\\\reached ‘when 3. applles for every link
(M1’ N.) of the networkx. S L ’ ‘

. It is shown below that this stage is necessarily reached in a finite
number of steps, that at this time D(B) mén e(C;F). for a11 A/B chains C, and
that the fma‘lafset of apprloach links can be used to détermine a speci‘ﬁg effec'tifvely
. shortest A/B ghain C, if mén e(C;F) <=, i.e. ,"if F is nonmaximal.
DERIVATION OF PROPERTIES OF THE ALGORITHM

The hext five results (lemmas 9 to 13) state certain relations that exist
between finitely labeled nodes and approach links at any stage of the algorithm-..,
| Assume that F is an,,/id_eal A/B flow pattern i'n,ahetwork_, and‘{that after starting

O | ’ to apply the ruIes of the algorithm the process. is ‘interrupted at an,arbitrary

v time. The labels and approach 1i,nksv described in the statements and.‘;proofs» of
these lemmas are assumed to be those that exist at the time of interruption
‘except where otherwise noted. “ |
i o . GI%:e‘mvma 9: - EM,Nis an‘approach link, ‘the following B L ‘)
F “ relation hold‘s,gg - V
D(N) > DM) + e(M; :F)
40
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Proof: Let D(M) denote the label of node' M at the time 1t wasuser to

| assign the present label to node N Then

“D(N) = D(M) + e(M N;F)

© U

. 1;&"} i

as a result of the relabehng rules ‘:lBut‘D(‘M). > D(M) since labels are never
1ncreased by the process. The inequality of the lemma follows.

\-
L

Lemmo 10:

The set of approach links do not contain a

subset that is a loop N
8

Proof: ouppose Nl’ Nz, . .‘ , Nk (N Nl)‘ iS‘ ,éfl%ﬁp, where each

N N +1 is an approach link. This loop is necessarlly a cycle (Since a node

never /has two approach links associated with it, the terminal nodes of the links
are all distinct.) According to lemma 9 then

D(’N‘-) > D(N ) + e(N1 1’ N";‘F> 7

( X N
)
fori=2; 3, ..., k. Moreover strict 1nequa11ty holds for at least\ol-., tjfalue

of i. Let Nj be the first of these k - 1 nodes to attain its present label. Then
if D(N l) denotes the label assoc1ated with N -1 at the time Nj attained its
present labél, D(N ) F D(N _1) and thus D(N )2 D(N °1) since labels are

nonmcreasmg.. Thus

D(N)>D(N _p) * e N N;F)

£

. Adding the k - 1 inequalities, at least one of whic’h:i's strict, and noting that

N = N N o (3
>D(N ) >S‘D(N )+ \: [e(N. , N F}
1__ ,1-1 1
i=2 i--2 . 1-.'_2
41




o ) But then the cycle N N g - , 'N‘kr has negative effective lengtlf relative to F
“. This rcontjra;di‘cts. lemma 8. " S0 no loop can exist; and the proof is ~_coh’1pl-etez.
 ~ o Lemma 11: If‘(‘N) < efor aneci'ee N other than A, an A/N*
cham C exists whose llnks are a11 approach links,
v;:, Proof; Since N has finite labél, an ;.pproach 11nk N2, Nis ass001ated
j ) “with it. - But then N g hasa finite label":and' an approach link N N,., One can
| '{A:‘ d)contlnue to trace backward in this manner until at' some stage an approach link
j \W is reached such that N =A. For accOrdi‘ng to lemma 10 the same
? *ﬁa ) \\ node 1s never reached tw1ce and there are a f1n1te number of nodes. Thue
r ) C A, Nk v N. k—‘2’ Nz, Nis the des.lre/g chain. ' o,
. . 4 K )
¢ o @ i /"
Lemma 12 /f,v Node A retainscits original label of zero. (S//
Proof Suppose node A is ass1g'n°d a label D(A) n <0.° Let N, A be
the approach link associated with A. Then D(N) <, and an A/N, cﬁéin of
| N approach links A, k 1, Nk 2.,: .‘ Nz, N can be produced accordlng to A
| . lemma 11, But then N A Nk 1’ i . NZ’ Nol.a a loop, which contradlcts‘
A lemma 10. This compl‘etes the proof. |
| ” T
; Lemma 13: . - X D(N} < the A/N chain C constructed in | RO
| Lemma 11 has the property DC(:N») ze(C;nF);.
It follows that the label vessoci‘ated' with a <
node is never less than the minimum ef- (’
o fective distance ﬁ?em A to: that node..
St 42




Proof: Let C be denoted by 'N N N where N = A and

2, . e
SR
. ff”‘N =N. Then for i=2 8, ., 1 the following . 'nequahty holds accordmg

to lemma 9 B . L N

hel

Di: (N )+e(N 'F)'

i- 1’
i

. Adding these ‘inequéfi"“iti;es.‘ thegfollowing"is; o’bta“‘iﬁedz
' B w7

o 2 r a1

DDz )Dey teE® |
J B R |

Noting that D(:N,l), =0 according to lemma 12, the desired result follows.

Now it can be shown that all labels remain:constant after a certain

number of repétitions of step b (see the §ubsection "'Statement ‘of the Algorithm').

Lemma 14: . All node labels remain constant after at.mostn ~ 1

i b
3R

iterations of (b) where ﬁ/ls the number of nodes
in the{hetwork.f/

Proof: Let N be any node 'otherﬂ than A such that min { e(C;F)]’ <, where

g

the mmlmum is taken over all A/ N chams C Let CN Nl’ N2 Y Nk be

any A/ N chaln that attalns th1s rainimum.. Clearly ke smce no cham contains

, the same node twice. So CN has at most n = 1 hn‘k‘s 7 ¢
After the flrst application of step b to all links, D(N 2) < D(Nl) + e(N F)
 i8 obtained since N o is relabeled on the basis of D(N )+ e(N F) unless an

even smaller label can be ass1gned In peneral ‘on completlon of the 1th application '

K




Oif?steii b \

D(N, 1) <D(N)+ e(N }\11+1,F) |

N o . 2y

sfor 1 = 1, 2, . . k 1, whue D(N ) is the label of N at the end of the

1 .
(or begmnmg of the i#+1° ) apphcatlon of step b and D(N ) is thedabel of N N
at‘ the beginning of the i happlu,atmn. i{\Addztng these k ~ 1 inequalities
e k k-1 . / ‘
E Ny E b Copi l: @ "
i=2 i=1
Since D(N;) = 0 it follows that o
{
D(N,) <e(C ;F) |

]

On the other hand D(N ) cannot be less than the minimum effective d1stance from
A'to N, since according to 1e'mma;s 11 and 13 an A/N chain C of approach links

can be produced 50 that D(N,) > e(C;F). It follows that C is an A/N chain of

minimum length, and that

Y \ FEE ”
D(N,) = &(C;F)
< >:l;i-b

Thus after at most k = 1 applications of step b, D(N) attalns its minimum value,
{ For nodes N such that min e(C; F) = , D(N) is minimized from the start of the

algorithm, so that the statement apphes to all nodes of the network.] This

2
o

comp‘letes the proof. N

<
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The following theorem summarizes the foregoing results.

’ "’I_‘he‘é;}\‘em 4: - Hthe effectlve—length algorlthm is apphed to
) a nétwork w1th an ideal A/ B flow pattern F,
| the procezs terminates (1 e., all labels re-
o main constant) after at most\n - 1 repetitions

~ of step b. . Upon termination the final value
~ of D(N) for any node N £A is equal to
{ y

min | (C;F)], where the minimum is taken

over all A/N chaing C. Moreover if D(N) < =
a chain attaining/this minimum can be found
by tracing back along approach links, as in
the proof of lemma 11.

Thus. the effective-length algorithm possesses th'e proi;erties that were:
ja;sumed in (the previous. section. "As a by-product it determines the: effective " -
distance from A to every other node although only the effective dlstance from

.. A to B can be used in the procedure. ) . o

- Note that the sequencing of the algorithm, whereby th,ef links are scanned

in some fixed order in step b, is not claimed to be as efficient as possible.
Pollack and W1ebenson6 summarize a number of efficient labeling algorlthms
whose obJectlve is to m1n1m1zel l(C) over all A/B chains-C, and it appears that

any of these might be adapted to minimize e(C;F). These are generally -

sequenced‘ in such a way that all links terminating in a given node are scanned
. N <':.> ' v




P . : v :‘ . Fets .,
i together, and the ,no'd?ys are taken in a certain order. The authors of this paper

' a‘re"r'ioj; in & position to evaluate the relative efficiencies of the various schemes

N

Wif progifamed; fora digitai computer.
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- GLOSSARY OF PRINCIPAL SYMBOLS . SN

T

)

Meaning “

Link joining nodes M and N (considered

AN

undirected)

" Dlrected link from M to N.
7

C(M, N)

1(M, N)

+ M

An M. /Mk path if My k,

a loop if

M,y =Mk;

Capacity of M, N (a nonnegative integer)

KN

-
&4

Length of M, N (a nonnegative real number)

CA 1, M

f(M, N), £(N, M)
Y (M)

V(F)

‘2’ - . .

, M

k) Length o% path or loop- . e

Flow in (M, N) exl;res'sed relative to l\ﬁ— |
and N, M respectively

Net ‘outpﬁ\i\: at node M (flow oti’ﬁputi minus.

input) o . ) o

Value of A/B'flow pattern F{ equal to
Y(A) and -Y(B)) ‘,

N Sum of A/B flow patterns F and G «
Differénce between A/B flow pattérns.

'chndf G

2‘,‘ . ‘.‘ .

The flow pattern ob,tained by a.'s‘s'i’g‘nin‘g r

M M and Zero .

units of flow to each i

to. gther;; links,, .

~ ‘L 1 47 : | i«
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